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A B S T R A C T   

New technologies are often considered direct competitors to humans in the realm of decision-making. This paper 
explores a novel approach to augmenting human decision-making through technology. Specifically, drawing on 
the brain’s unique ability to learn from sensory experiences, we introduce sensory substitution, the encoding of 
information in an alternative sensory modality, as a method to improve decision-making. In a within-subject 
design (N = 48), we show that translating numerical information into sensory experiences (i.e., tactile stimu
lation administered to a person’s body) results in higher decision accuracy in a multiple-cue learning task. 
Response time analyses, participants’ self-reports, and cognitive modeling all suggest that the benefits afforded 
by sensory substitution are the result of a shift from explicit rule abstraction to configural learning. That is, rather 
than deliberately inferring decision rules, participants develop intuitive, perceptual strategies to accurately 
predict outcomes. Together, our findings suggest that sensory substitution could enhance decision-making by 
training “gut instincts” rather than deliberate decision-making skills.   

1. Introduction 

People frequently make consequential decisions based on abstract, 
numerical information. For example, they might use several quantitative 
performance metrics when investing in stocks or making lending de
cisions. Past research has shown that human decision-making is often
times flawed when it comes to drawing inferences from numerical data 
(Dimara et al., 2021), in particular when the data contain nonlinear 
relationships and interactions (Ashby & Valentin, 2017; Juslin et al., 
2008; Olsson et al., 2006). The present research investigates the use of 
sensory substitution as a method to improve decision-making based on 
quantitative data. 

Sensory substitution refers to the encoding of information through a 
sensory modality that is typically not involved in the processing of such 
information (Bach-y-Rita, 2004; Bach-y-Rita et al., 1969). For instance, 
information captured by a camera can be transformed into a 
vibro-tactile sensation on a person’s skin, allowing blind individuals to 
interact with visual stimuli in their environment (Bach-y-Rita et al., 
1969; Maidenbaum et al., 2014). Similarly, auditory information can be 
transformed into a tactile stimulation through wearable vibro-tactile 
interfaces to support patients with hearing impairments (Novich & 
Eagleman, 2015). We propose that sensory substitution, in particular the 
transformation of numerical data into tactile information, can improve 
decision-making by shifting learning processes from explicit rule 

abstraction to configural learning (Juslin et al., 2008). Our work in
tegrates the literatures on sensory substitution, decision-making, and 
human-computer interaction (HCI), testing novel theoretical predictions 
while laying the groundwork for practical applications in user interfaces 
and decision aides. 

1.1. Theoretical background: Sensory substitution and intuitive decision- 
making 

The term sensory substitution was first coined in the context of cross- 
modal encoding of sensory information. Specifically, the term refers to 
the transformation of a stimulus that is typically processed by one sen
sory modality into a set of signals that can be displayed as a stimulus to a 
different sensory modality (Bach-y-Rita et al., 1969; Visell, 2009). The 
most widely used approach is tactile sensory substitution, where infor
mation (typically visual or auditory) is transformed into tactile sensa
tions that are displayed on a user’s skin (e.g., Bach-y-Rita et al., 1969; 
Cancar et al., 2013; Guémann et al., 2022; Nagel et al., 2005). Tactile 
stimulation is well suited for sensory substitution for several reasons. 
First, many of the psychophysical mechanisms involved in the process
ing of tactile information are well understood (e.g., Kandel et al., 2021). 
Second, the hardware required to implement tactile stimulation is 
relatively cheap and can be adjusted to the receptive fields of even the 
most sensitive parts of the human body (Visell, 2009). Finally, the 
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processing of tactile information can happen in parallel to the processing 
of information through other channels. While visual and auditory 
channels are prone to interference, the skin provides a lot of idle surface 
area that can be used to display information while visual or auditory 
attention is directed elsewhere (Novich & Eagleman, 2015; Tikuisis 
et al., 2001). 

Past research has explored a wide range of applications for tactile 
sensory substitution including the treatment of sensory deficits (e.g., 
Bach-y-Rita et al., 1969; Bach-y-Rita & Kercel, 2003; Maidenbaum et al., 
2014), navigation (Kerdegari et al., 2016; Neugebauer et al., 2020), the 
rehabilitation of motor function (e.g., Bach-y-Rita, 2004; Guémann 
et al., 2022; Lynch et al., 2022), and interface design for virtual envi
ronments (e.g., Visell, 2009). For example, it has been shown that visual 
information recorded by a camera can be transformed into a 
vibro-tactile representation that is projected on a person’s skin, such 
that a visually impaired individual can learn to interact with their 
environment based on tactile cues (Bach-y-Rita et al., 1969; Maid
enbaum et al., 2014). Similar results have been presented with regard to 
the vestibular system, where tactile information was used to inform 
head-body postural coordination in patients with bilateral vestibular 
damage (Bach-y-Rita, 2004). Other research has explored the potential 
of sensory substitution from auditory to tactile stimulation and pio
neered the construction of wearable vibro-tactile interfaces (Novich & 
Eagleman, 2015; Perrotta et al., 2021). 

The present research proposes a novel application of sensory sub
stitution for decision-making. We suggest that the transformation of 
abstract numerical data into tactile stimuli can improve the quality of 
decision-making by shifting learning processes from explicit rule 
abstraction to configural learning (Juslin et al., 2008; Olsson et al., 
2006). Explicit rule abstraction is commonly employed when in
dividuals are presented with tabular numerical data and asked to make 
predictions about the data. The abstraction is based on analytical, 
rule-based thinking and deliberation, and has been shown to work well 
for additive, linear cue environments, but not when the cues involve 
nonlinear relationships (Juslin et al., 2008; Olsson et al., 2006). Con
figural learning, on the other hand, is an implicit, intuitive process that 
is better suited to learn holistic representations rather than individual 
cues (Enkvist et al., 2006; Olsson et al., 2006). 

The distinction between explicit rule abstraction and configural 
learning is aligned with a vast field of research on dual processing sys
tems that juxtaposes rational, deliberate, rule-based thought against 
implicit, automatic, experiential, intuitive processing (e.g., Dane & 
Pratt, 2007; Epstein, 2012; Hogarth, 2001; Kahneman, 2003; Sloman, 
1996; Stanovich & West, 2000). While much of these works have 
pointed out the shortcomings of non-deliberative, intuitive thinking 
(producing approximate solutions that may deviate from rationality; e. 
g., Dhami, 2003; Gigerenzer & Goldstein, 1996; Kahneman, 2003; 
Simon, 1997; Simon et al., 1992), there is also a substantial body of 
research documenting its advantages. For example, human decisions are 
more accurate in nonlinear cue environments when relying on config
ural learning rather than rule abstraction (Juslin et al., 2008; Olsson 
et al., 2006) and people sometimes make better decisions in the absence 
of attentive deliberation (Dijksterhuis et al., 2006; Enkvist et al., 2006; 
Olsson et al., 2006). Similarly, it has been argued that high-level 
cognitive decisions can be sub-optimal, as evidenced by deviations 
from the predictions of expected utility theory, while performance is 
more aligned with expected utility theory in many perceptual or motor 
decision tasks, which are more reliant on implicit processes (Wu et al., 
2009; for a counter argument see Jarvstad et al., 2013). Further, implicit 
processes may also be faster and more economical (Dane & Pratt, 2007; 
Gigerenzer & Goldstein, 1996; Simon, 1997). Finally, past work has 
shown that intuitive decision-making often leads to better outcomes in 
real world scenarios when the decider can rely on acquired expertise 
(Klein, 2015; Simon, 1992; Simon & Chase, 1973). Due to its reliance on 
pattern recognition, intuition has been characterized as holistic, thereby 
enabling the effortless integration of complex information (Dane & 

Pratt, 2007; Shapiro & Spence, 1997). This notion of intuition is closely 
related to the idea of configural learning, which emphasizes the 
importance of pattern recognition, exemplar memory, and implicit, 
intuitive processes (Juslin et al., 2003, 2008; Olsson et al., 2006). 

Prior work suggests that configural learning and intuition play an 
important role in sensory substitution. For example, research shows that 
the sensory decoding in sensory substitution tasks can be learned intu
itively and that familiarization with sensory substitution devices leads to 
a progressively automatic decoding of information. This progressively 
automatic decoding - a key characteristic of intuition (Adam & Demp
sey, 2020; Hogarth, 2001) - is manifested in a lack of conscious attention 
or effort when completing sensory substitution tasks (Deroy & Auvray, 
2012). Similarly, after sufficient familiarization with tactile sensory 
substitution devices, users have reported that they no longer perceive 
the proximal stimulation on their skin, but instead directly attribute it to 
a distant object (Bach-y-Rita et al., 1969; Bach-y-Rita & Kercel, 2003; 
Deroy & Auvray, 2012; Lenay et al., 2003). This shift to distal attribution 
has, in turn, been linked to implicit perceptual strategies as opposed to 
explicit cognitive strategies (Siegle & Warren, 2013). 

Taken together, these examples suggest that sensory substitution 
taps into implicit, intuitive, learning processes similar to those under
lying configural learning. Consequently, by enabling people to experi
ence abstract information more directly (i.e., through their bodies), 
sensory substitution may encourage configural learning and facilitate 
intuitive, perceptual decision-making. This shift to configural learning 
might lead to improved performance when decision-makers are required 
to integrate complex (and interactive) information from multiple 
sources. 

1.2. Current research 

Integrating the literature on sensory substitution and configural 
learning, we argue that sensory substitution can enable people to 
experience abstract information more holistically, thereby encouraging 
configural learning and intuitive decision-making. Specifically, 
employing a multiple-cue learning task (Enkvist et al., 2006; Juslin 
et al., 2008; Olsson et al., 2006), we investigate two complementary 
research questions pertaining to the effect of sensory substitution on 
decision-making and its underlying mechanism: 

Research Question 1: Can sensory substitution improve decision- 
making? We hypothesize that displaying data in the form of tactile in
formation (i.e., sensory substitution), rather than in numerical form, will 
result in higher decision-making accuracy. 

Research Question 2: Which underlying mechanism explains the 
effect? We hypothesize that the benefit of sensory substitution is the 
result of a shift from (deliberate) explicit rule abstraction to (intuitive) 
configural learning. 

The current research aims to make three main contributions. First, it 
adds to the literature on sensory substitution by studying the concept in 
a novel context: decision-making. Second, it tests a novel theoretical 
prediction derived from the decision-making literature, namely the idea 
that configural learning may be responsible for improved decision- 
making performance associated with sensory substitution. Third, it 
provides a starting point for a novel research program at the intersection 
of cognitive science and human-computer interaction (HCI) that could 
lead to a wide range of theoretical contributions and practical 
applications. 

2. Method 

2.1. Participants 

We collected data from 48 participants (22.04 ± 2.71 years old, 
66.66% female). The targeted sample size was based on pilot data sug
gesting large effects of the treatment conditions. All participants were 
students at Columbia University, recruited through the university’s 
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Behavioral Research Lab. Data collection was covered under the IRB at 
Columbia University (protocol number: AAAS9184-M00Y01). All ex
periments were performed in accordance with relevant guidelines and 
regulations, and informed consent was obtained from all participants 
before data collection. 

2.2. Experimental design 

The study employed a one-factorial within-person design with three 
randomly ordered counterbalanced conditions. Participants were pre
sented with a multiple-cue prediction task (Enkvist et al., 2006; Juslin 
et al., 2008; Olsson et al., 2006), in which they repeatedly had to make 
binary decisions. In the three conditions, participants’ decisions were 
based on: 1) abstract numerical information (three integer numbers 
predictive of a single binary outcome), 2) abstract visual exemplars 
(shapes that represent those same three integers), or 3) sensory substi
tution (vibrations administered through a vibro-tactile interface repre
senting those same three integers). In each condition, participants were 
asked to make a prediction regarding the value of the unknown outcome 
variable by pressing either the left or the right arrow key on a computer 
keyboard. After the answer was recorded, participants received feed
back on whether their decision was correct or not. Each condition 
involved 100 trials during which the participant had to infer the un
derlying relationships between the predictors and the outcome. The data 
were constructed such that the task could be solved perfectly if partic
ipants had full knowledge of the data generating process (i.e., the two 
outcome classes were fully separable using a configural strategy). In 
practice, since participants had to learn the underlying rules gradually, 
performance was expected to be much lower. Specifically, the dataset 
was generated using the Scikit-Learn (Pedregosa et al., 2011) “make_
classification” method, which is a standardized procedure to generate 
random n-class classification problems, based on an algorithm adapted 
from Guyon (2003). We chose to generate 6 fully separable gaussian 
clusters across the three feature dimensions, half of which were 
randomly mapped to each of the two classes of the target variable. This 
resulted in a classification task that is moderately difficult to solve for 
human learners but can be solved perfectly by a statistical classifier that 
is able to represent a sufficiently complex decision boundary. The full 
dataset alongside a visual representation and descriptive statistics of the 
feature distributions, as well as the code that was used to generate the 
data can be found on the authors’ OSF page. An overview of the 
experimental design can be found in Fig. 1. 

Condition 1: Numerical baseline. Participants were presented with 
three numbers on a computer screen. Each of the numbers represented 
one of three variables from a synthetic dataset generated for the task. 
The variables were scaled to a range of [0, 1000] (Fig. 1). 

Condition 2: Visual exemplar. This control condition was imple
mented to test whether configural learning is part of the cognitive 
mechanism leading to improved performance. Exemplars are 

prototypical representations of objects stored in memory that allow for 
the classification of novel objects based on similarity (Medin & Schaffer, 
1978; Nosofsky, 2011) and have been shown to play a critical role in 
configural learning (Juslin et al., 2003, 2008). Exemplar learning is 
typically studied using distinguishable visual shapes. Accordingly, the 
three numbers shown in the baseline condition were transformed into a 
single shape with three equally spaced vertical axes. The shapes were 
constructed such that the length of the three vertical axes mapped 
proportionally onto the three numbers presented in the baseline con
dition, and the area spanned by the axes was filled to create the 
impression of a single shape. Simply, the shapes captured exactly the 
same relative information as the numbers in the baseline condition, but 
presented them in a single coherent configuration in order to evoke 
configural learning rather than explicit rule abstraction (Fig. 1). While 
the presentation of shapes may be regarded as an instance of sensory 
substitution itself, in the sense of translating information from a 
“number sense” (Dehaene, 2011) to the visual modality, its primary 
purpose in the given study was to act as a control condition where 
configural learning was guaranteed to occur. Comparing its results to 
those produced by tactile sensory substitution would then indicate 
whether configural learning played a role in tactile sensory substitution 
(see below). 

Condition 3: Sensory substitution. Haptic information was delivered 
via a vibro-tactile interface that projected the numerical data into vi
brations of varying intensity. The interface consisted of an Arduino 
board and three vibration motors attached to participants’ fingertips 
(index, middle and ring finger) with straps (Fig. 1). The vibrations were 
administered through 10 × 2.7 mm button-type motors commonly used 
in smartphones. The vibration amplitude exerted by each motor was 
independently controlled by varying the voltage in the circuit. The nu
merical inputs were mapped to vibration intensities by regulating the 
voltage between 0 and 5 V, proportional to the underlying numeric 
values used in the numerical baseline condition. The motors were 
controlled using a Matlab interface. The stimulus was interrupted while 
participants received feedback for each trial in order to prevent habit
uation of the sensory tactile threshold (Kaczmarek et al., 1991). 

Participants were briefed on the study design, expected time, and 
instructions for each condition prior to the study initiation. Participants 
provided basic information concerning their age, gender, and handed
ness. Following, participants were fitted with the sensory substitution 
apparatus to ensure ease of transition to the sensory substitution con
dition. Participants sat approximately 60 cm from a 24-inch monitor. 
The visual content was presented on the screen within roughly 25◦ of 
visual angle. The lab setting (noise, luminance, temperature, etc.) were 
fixed across participants. Participants had no opportunity to practice the 
task before the experiment, because the goal of the experiment was to 
capture the learning process starting at baseline. However, participants 
received detailed instructions for each sub-task and were familiarized 
with the stimuli and the arrow keys used to indicate their decision. After 

Fig. 1. Overview of the experimental conditions. For the same three numbers, we represent the data in three conditions: numerical (left), sensory (right), and vi
sual (center). 
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the participants had finished all multiple-cue learning tasks, they were 
asked to rate each of the conditions on two 5-point Likert scales (“How 
intuitive was the task?“, “How enjoyable was the task?“). Participants 
were also asked to provide some qualitative description of their 
approach to each task. Finally, participants were debriefed about the 
purpose of the study and were paid. A minimum payment of $5 for 
participation was guaranteed. Additionally, each correct answer above 
chance performance was rewarded with a bonus of 20¢. 

Exclusion criteria included low response variance (SD < 0.3, decision 
class ratio >90/10) and consistently low response times (mean < 0.2 s) 
per person per condition, as this would indicate a lack of engagement 
with the task. If a person met one of these criteria in any condition they 
would have been excluded from the dataset, but none of the participants 
met the exclusion criteria. Generally, non-compliance was not a major 
concern as the experiment was conducted in person under the supervi
sion of a research assistant and correct responses were incentivized. 

2.3. Outcome measures and statistical hypotheses 

The main outcome measure of interest was the percentage of correct 
trials in each of the three conditions. In addition, the performance on the 
decision-making task over time (i.e., learning curves; Fig. 2) was oper
ationalized as the cumulative score corrected for chance performance, 
using the formula: 

Pt = 0.01

[(
∑t

0
Ct

)

− tp

]

+ p (1)  

where Pt denotes the learning state in trial t, Ct denotes the value of the 
participant’s response in trial t, and p denotes the chance of guessing the 
correct answer (i.e., the expected value of the target variable). The .01 
constant was chosen to ensure a [0, 1] range for P across the 100 trials. A 
final value of 0 reflects a participant who made the wrong prediction in 
every single trial and a final value of 1 reflects perfect predictions across 
all trials. A final value of 0.5 reflects chance performance. 

Complementing the performance metrics, we examined two addi
tional outcome measures. First, we recorded participants’ response 
times for each trial. Second, we considered participants’ self-reported 
intuitiveness ratings. 

Based on the hypothesis that configural learning induced by sensory 
substitution leads to improved decision-making performance, we ex
pected decision accuracy to be higher in the sensory substitution con
dition compared to the numerical condition. Similarly, we expected 
performance in the visual exemplar condition, which was specifically 

designed to induce configural learning, to be higher than in the nu
merical baseline condition. 

To test whether the effects were indeed the result of configural 
learning, we formulated four additional hypotheses. 

1) We expected no statistical difference in accuracy between the sen
sory substitution condition and the visual exemplar condition since 
both were presumably driven by configural learning (Juslin et al., 
2003, 2008).  

2) We expected response times in the sensory substitution condition and 
the visual exemplar condition to be significantly shorter than in the 
numerical condition, since the intuitive, perceptual decision process 
associated with configural learning should be less time intensive than 
the deliberative decision process associated with explicit rule 
abstraction (Dane & Pratt, 2007).  

3) We expected participants to report higher degrees of intuitive 
decision-making in the sensory substitution condition and the visual 
exemplar condition compared to the numerical baseline condition.  

4) Based on the idea that configural learning is well suited for nonlinear 
cue environments (Juslin et al., 2008), we predicted that partici
pants’ responses in the sensory substitution condition were better 
explained by a nonlinear cognitive model compared to a linear one 
(Brehmer & Brehmer, 1988). 

3. Results 

3.1. Research question 1: Can sensory substitution improve decision- 
making? 

To test whether the sensory substitution condition resulted in higher 
performance than in the baseline condition, we compared the decision 
accuracy (proportion of correct trials) across conditions using pairwise 
dependent sample t-tests. As expected, participants performed signifi
cantly better in the sensory substitution condition (0.636 ± 0.087; t 
(47) = 6.01, p < .001, d = 0.87; Fig. 2) and the visual exemplar con
dition (0.649 ± 0.087; t (47) = 7.32, p < .001, d = 1.06) compared to 
the numerical baseline condition (0.535 ± 0.061). Participants in all 
three conditions performed better than chance (all p < .001). 

As learning is a function of the feedback received during the task, we 
evaluated the performance curves over time across the three conditions. 
Participants in the sensory substitution condition and the visual exem
plar condition learned faster and showed higher cumulative perfor
mance compared to the numerical baseline condition (Fig. 2). To 
formally characterize the learning process, we compared the 

Fig. 2. Decision-making performance over time. Performance curves are depicted in gray (individual) and blue (mean) lines. Dashed red lines denote chance 
performance. The statistics in the upper left corner show the comparison of the visual exemplar and sensory substitution conditions with the numeric baseline 
condition. The parameters of the estimated generalized logistic function are shown on the bottom left. 
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performance curves to several plausible functions, including linear, 
quadratic, exponential, and generalized logistic. We found that the mean 
performance curves were best approximated by a generalized logistic 
function of the form: 

Pt =A +
K − A

1 + e− B(t− M)
(2)  

where Pt denotes performance in trial t, A the lower asymptote, K the 
upper asymptote, B the growth rate, and M the starting time (departure 
from the lower asymptote). 

Whereas the lower asymptote (A) captures participants’ initial 
random guesses (chance = 0.5) and the upper asymptote (K) acts as an 
approximation of the learning outcome (i.e., cumulative performance), a 
comparison of the remaining parameters allows us to statistically 
differentiate the learning mechanism across sensory modalities. Sup
porting the notion that translating data into abstract sensory experiences 
leads to a change in learning processes, the growth rates (B) of the 
sensory and visual performance curves were significantly different from 
those of the numeric condition (all p < .001; t-test; see parameters in 
Fig. 2). 

3.2. Research question 2: Which underlying mechanism explains the 
effect? 

To test whether the performance improvement could be explained by 
a shift towards configural learning, we offer converging evidence across 
four approaches: First, we analyze whether participants’ performance 
and learning trajectories differ between the sensory substitution and 
visual exemplar condition. Second, we test whether participants’ 
response times were faster in the sensory substitution and visual con
ditions compared to the numerical baseline. Third, we compare partic
ipants’ self-reported intuitiveness ratings across conditions. Fourth, we 
employ a cognitive model using policy capturing techniques (Aiman-
Smith et al., 2002; Brehmer & Brehmer, 1988) to assess whether higher 
levels of configural learning occurred in the sensory substitution and 
visual exemplar conditions compared to the numerical baseline 
condition. 

3.2.1. Comparison of sensory substitution and visual exemplar condition 
Aligned with our prediction that both the sensory substitution and 

the visual exemplar condition should be afforded the same configural 
learning benefits, we did not observe any differences in accuracy be
tween the sensory substitution condition and the visual exemplar con
dition (t (47) = -0.75, p = .457, d = − 0.11; Fig. 3). In addition, the 
analyses of learning trajectories showed that there was no difference in 
the growth rate between the sensory substitution and the visual exem
plar condition (p = .809), indicating that the two conditions followed 
similar performance trajectories. Small differences were observed be
tween the starting times (M, p < .001) as participants in the sensory 
substitution condition showed a slightly later pick-up in performance 
compared to the visual exemplar condition. While speculative, this dif
ference might be explained by the fact that making decisions based on 
haptic feedback is less common than making decisions based on visual 
information, and hence might require a slightly longer adjustment 
period. 

3.2.2. Response time 
Participants in the sensory substitution condition (1.77 ± 0.648s) 

and the visual exemplar condition (1.40 ± 0.620s) were significantly 
faster in their response time compared to the numeric baseline condition 
(2.58 ± 1.51s; t (47) = -4.05, p < .001, d = − 0.58 for the sensory- 
numerical comparison; t (47) = -6.88, p < .001, d = − 0.99 for the 
visual-numerical comparison; Fig. 3). The shorter response times in the 
sensory substitution and visual exemplar conditions compared to the 
numerical baseline condition align with the suggestion that the intui
tive, perceptual decision process associated with configural learning 
should be less time-intensive than the deliberative decision process 
associated with explicit rule abstraction (Dane & Pratt, 2007). 

3.2.3. Intuitiveness ratings 
In line with the more objective measure of response time, partici

pants experienced the sensory substitution condition (3.14 ± 0.94, t 
(47) = -4.26, p < .001, d = 0.62; measured on a 1–5 scale) and visual 
exemplar condition (3.26 ± 1.01-, t (47) = 4.43, p < .001, d = 0.61) as 
more intuitive compared to the numerical baseline condition (2.39 ±
0.98). There was no difference in participants’ subjective intuitiveness 

Fig. 3. Comparison of decision-making performance and response times across conditions. Mean proportion of correct responses per user across conditions (left). 
Mean response time in seconds across conditions (right). Error bars represent standard errors for repeated measures comparison. 
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ranking between the sensory substitution and visual exemplar condi
tions (t (47) = 0.706, p = .484, d = 0.10). 

3.2.4. Cognitive model 
Based on the notion that explicit rule abstraction is associated with 

linear solution strategies while configural learning is well suited for 
interactive cue environments (Juslin et al., 2008), we employed a 
computational cognitive modeling approach. Specifically, we used a 
linear additive regression model as a baseline to represent the strategy of 
explicit rule abstraction and a model containing interaction effects to 
represent configural learning (Brehmer & Brehmer, 1988; Castellan, 
2013; Juslin et al., 2008). We identified the dominant cognitive strategy 
employed by each participant in each condition by comparing how well 
the models accounted for participant’s responses (Brehmer & Brehmer, 
1988). That is, we used the numeric values of the stimuli in each trial to 
predict participants’ response in that trial. Intuitively, the bigger the gap 
between the performance of the nonlinear interaction model and the 
linear baseline model, the more likely it is that a participant engaged in 
configural learning (i.e., by taking interactions between the features into 
account when making their decision). On the contrary, a participant is 
less likely to have engaged in configural learning if the linear model and 
the interaction model were to explain the participant’s responses equally 
well. 

Formally, configural learning scores were operationalized as the 
difference in model fit between a linear model without interactions and 
a model with interactions, both of which predicted participants’ re
sponses from the cues presented in each condition of the experiment. 
Specifically, we used generalized linear models with a logit link function 
(logistic regression) to represent the relationships between cues and 
responses for each individual participant. The linear model contained 
only the three cues as linear predictors, whereas the interaction model 
contained the three linear predictors, as well as first order interaction 
terms (six terms in total). The model specifications were: 

Linear model : logit(pt)= β0 + β1c1t + β2c2t + β3c3t + et (3)  

Interaction model : logit(pt)= β0 + β1c1t + β2c2t + β3c3t + β4c1tc2t + β5c1tc3t

+ β6c2tc3t + et

(4)  

where pt = E [Rt |c1t, c2t, c3t] and Rt represents the binary response 
variable, while c1t, c2t, and c3t represent the cues on which each decision 
was based. The intercept and the model coefficients of each predictor 
term are represented by βi, and the error term is denoted by et. Both 
models were fitted for each participant and configural learning scores 
were computed by subtracting the deviance score of the interaction 
model from the deviance score of the linear model. Deviance is a 
commonly used measure of error in the context of generalized linear 
models, with lower values indicating better model fit (Pierce & Schafer, 
1986). Configural learning scores were therefore higher when partici
pants used nonlinear cue integration strategies (interaction model fit 
better than linear model fit) and lower when participants used linear cue 
integration strategies (interaction model did not fit better than linear 
model fit). Configural learning scores were computed separately for 
each individual and condition. 

We used pairwise dependent sample t-tests to compare configural 
learning scores across conditions. The results show significantly higher 
configural learning scores in the sensory substitution condition (t (47) =
-1.82, p = .038, d = 0.26) and the visual exemplar condition (t (47) =
-3.51, p < .001, d = 0.51) compared to the baseline condition. Config
ural learning scores in the visual exemplar condition were also signifi
cantly higher than in the sensory substitution condition (t (47) = -2.66, 
p < .011, d = 0.38). Taken together, these results indicate that the 
performance difference between the sensory substitution condition and 
the numerical baseline condition was associated with a shift from 
explicit rule abstraction to configural learning. 

4. Discussion 

We tested whether sensory substitution improves decision-making 
by shifting cognitive processes from explicit rule abstraction to config
ural learning. Our findings show that sensory substitution was associ
ated with a significant performance improvement compared to a 
numerical baseline condition. The same performance improvement was 
found with respect to the visual exemplar condition which was delib
erately set to favor configural learning. No significant performance 
difference was found between the sensory substitution and the visual 
exemplar condition, pointing towards configural learning as the mech
anism underlying the performance increase. The suggestion that con
figural learning drives the effect is further supported by the fact that 
participants in both the sensory substitution and visual exemplar con
ditions showed significantly lower response times compared to the nu
merical baseline condition. The latencies in each condition are 
consistent with the notion that intuitive and configural decision pro
cesses are quicker than deliberative, explicit, processes (Dane & Pratt, 
2007). Additionally, both sensory substitution and visual exemplar tasks 
were rated by participants as significantly more intuitive compared to 
the numerical baseline task. In line with these findings, a cognitive 
modeling analysis indicates that participants relied more heavily on 
configural learning in the sensory substitution condition, compared to 
the numerical baseline condition. 

Taken together, our findings provide the first empirical evidence 
that: 1) sensory substitution can aid decision-making (with large effect 
sizes between d = 0.87–1.06), and 2) the benefits afforded by sensory 
substitution are the result of a shift from (deliberate) explicit rule 
abstraction to (intuitive) configural learning. Our findings also extend 
prior work investigating the distinction between explicit rule abstraction 
and configural learning. While previous research has established the 
ability of holistic visual stimuli to encourage configural learning over 
explicit rule abstraction (Juslin et al., 2003), the projection of data to the 
tactile sensory modality provides an extended layer of abstraction that 
could be used in contexts where processing visual information is 
impractical (Luzhnica et al., 2018) or impossible (e.g., in situations 
where visual attention is required elsewhere, like driving). By involving 
new modalities that capitalize on the brain’s ability to rapidly process 
information and adapt to new sensory settings (Rauschecker, 1995; 
Sharma et al., 2000) it might become possible for people to learn how to 
truly “feel” the solutions to complex problems rather than inferring them 
cognitively. For example, the same way humans experience “cold” as a 
holistic sensation that does not require them to deliberately integrate 
information about air temperature, radiant temperature, humidity and 
wind across multiple locations of their body, professional traders could 
gradually learn to feel the “temperature” of the stock market. 

4.1. Limitations and future directions 

As this is the first work to test the effects of sensory substitution in the 
context of decision-making, we note several limitations and avenues for 
future research. First, while the present study provides initial evidence 
for the proposed role of configural learning in sensory-based decisions, 
future work should further investigate the mechanism underlying the 
performance improvement. Specifically, we suggest studying the neural 
underpinnings of the effect using brain readouts such as EEG data to try 
to distinguish the neural pathways associated with explicit rule 
abstraction and configural learning. 

Second, the present results call for an investigation of the general
izability of the findings. While our study demonstrates a strong positive 
effect of sensory substitution in a well-controlled context, it remains 
unclear how the results generalize to more complex use-cases beyond 
artificially generated data with specific properties (i.e., only three fea
tures, moderate correlations, interactions). Past work (e.g., Auvray & 
Harris, 2014) has pointed out the difficulties of using traditional sensory 
substitution devices in real-world settings when trying to preserve the 
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complexity of the forwarded signal. Here, we propose a simpler version 
of a sensory device that can be used without extensive training. This 
simplicity can be achieved by limiting the amount of information for
warded to the human user, which in turn means that the developer 
pre-determined the functionality of the sensory augmentation device 
and its use case. This also imposes bounds on the generalizability of our 
findings to more complex use cases. To study the boundary conditions of 
the effect more rigorously, future work should also explore the moder
ating role of specific properties of the data, such as the number of fea
tures, or the specific kinds of interactions and nonlinearities in the 
inputs, as well as the effects of more extensive training. 

Third, while the contribution of this paper is primarily theoretical, it 
has not escaped our notice that future research should identify real- 
world use cases and study how a system like the vibro-tactile interface 
can be turned into practical applications in ecological settings. For 
example, one could investigate how sensory substitution interacts with 
existing knowledge in a decision domain: would the effect persist when 
people interpret the predictors in meaningful ways and build on prior 
knowledge when making decisions? Further, would continuously 
wearing sensory substitution devices allow people to seamlessly inte
grate new information into their experience of the world (e.g., tracking 
the mood or productivity of an organization via a bracelet)? Indeed, it 
has been shown that after prolonged exposure, the data streams from 
sensory devices (such as cochlear and retinal implants, but also sensory 
substitution devices) are not experienced as external information pro
jected to the ear/eye/skin, but as true sensory experiences (Bach-y-Rita 
et al., 1969; Bach-y-Rita & Kercel, 2003; Deroy & Auvray, 2012; Lenay 
et al., 2003; Rauschecker, 1995; Sharma et al., 2000). 

4.2. Conclusion 

Taken together, our findings provide the first empirical evidence for 
the effectiveness of sensory substitution in decision-making. In addition, 
the findings also offer a starting point for a broader cross-disciplinary 
research program that can investigate the mechanisms underlying the 
effectiveness of sensory substitution, its boundary conditions, and its 
potential to inform the design of real-world decision aides. 
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Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. 

Perrotta, M. V., Asgeirsdottir, T., & Eagleman, D. M. (2021). Deciphering sounds through 
patterns of vibration on the skin. Neuroscience, 458, 77–86. 

Pierce, D. A., & Schafer, D. W. (1986). Residuals in generalized linear models. Journal of 
the American Statistical Association, 81(396), 977–986. 

Rauschecker, J. P. (1995). Compensatory plasticity and sensory substitution in the 
cerebral cortex. Trends in Neurosciences, 18(1), 36–43. 

Shapiro, S., & Spence, M. T. (1997). Managerial intuition: A conceptual and operational 
framework. Business Horizons, 40(1), 63–68. 

Sharma, J., Angelucci, A., & Sur, M. (2000). Induction of visual orientation modules in 
auditory cortex. Nature, 404(6780), 841–847. 

Siegle, J. H., & Warren, W. H. (2013). Distal attribution and distance perception in 
sensory substitution. Perception, 39(2), 208–223. 

Simon, H. A. (1992). What is an “explanation” of behavior? Psychological Science, 3(3), 
150–161. 

Simon, H. A. (1997). Models of bounded rationality: Empirically grounded economic reason. 
MIT Press.  

Simon, H. A., & Chase, W. G. (1973). Skill in chess. American Scientist, 61, 394–403. 
Simon, H. A., Egidi, M., Marris, R. L., & Viale, R. (1992). Economics, bounded rationality 

and the cognitive revolution. Edward Elgar Publishing.  
Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological 

Bulletin, 119, 3–22. 
Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications 

for the rationality debate? Behavioral and Brain Sciences, 23, 645–665. 
Tikuisis, P., Meunier, P., & Jubenville, C. E. (2001). Human body surface area: 

Measurement and prediction using three dimensional body scans. European Journal 
of Applied Physiology, 85(3–4), 264–271. 

Visell, Y. (2009). Tactile sensory substitution: Models for enaction in HCI. Interacting with 
Computers, 21(1–2), 38–53. 

Wu, S.-W., Delgado, M. R., & Maloney, L. T. (2009). Economic decision-making 
compared with an equivalent motor task. Proceedings of the National Academy of 
Sciences, 106(15), 6088–6093. 

H. Peters et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0747-5632(23)00148-6/sref36
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref36
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref37
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref37
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref37
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref38
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref38
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref38
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref39
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref39
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref39
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref40
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref40
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref40
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref41
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref41
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref41
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref41
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref42
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref42
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref43
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref43
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref44
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref44
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref45
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref45
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref46
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref46
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref47
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref47
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref48
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref48
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref49
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref49
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref50
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref51
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref51
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref52
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref52
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref53
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref53
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref54
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref54
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref54
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref55
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref55
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref56
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref56
http://refhub.elsevier.com/S0747-5632(23)00148-6/sref56

	Sensory substitution can improve decision-making
	1 Introduction
	1.1 Theoretical background: Sensory substitution and intuitive decision-making
	1.2 Current research

	2 Method
	2.1 Participants
	2.2 Experimental design
	2.3 Outcome measures and statistical hypotheses

	3 Results
	3.1 Research question 1: Can sensory substitution improve decision-making?
	3.2 Research question 2: Which underlying mechanism explains the effect?
	3.2.1 Comparison of sensory substitution and visual exemplar condition
	3.2.2 Response time
	3.2.3 Intuitiveness ratings
	3.2.4 Cognitive model


	4 Discussion
	4.1 Limitations and future directions
	4.2 Conclusion

	Credit author statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References


