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Advances in the affordability and sophistication of neuroscientific techniques are allowing 
for the investigation of neural processes in domains such as marketing and economics, where 
neuroscience data is offering novel and often non-incremental contributions. In this study, 
we explore neuroscience and its’ potential in furthering the study of entrepreneurship. We 
put forward an overview of neuroscience, discussing its key tenets, evolving boundaries and 
select methodologies. We outline a set of research areas in the domain of entrepreneurship 
that can be advanced via neuroscience—focusing on automaticity, individual differences, 
construct clarification and entrepreneurial learning. We also note several key challenges of 
applying neuroscience to entrepreneurship. The net effect of this cross-disciplinary effort is 
progress toward the establishment of a new discipline: neuro-entrepreneurship.  
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INTRODUCTION 

Neuroscience research is rapidly advancing our 
understanding of the human brain (e.g., Adolphs, 2003; 
Bear et al., 2007; Deary et al., 2010). Tools that are 
becoming increasingly accessible and sophisticated, such 
as fMRI scanners and EEG headsets, allow for direct 
assessment of brain activity in unprecedented ways. As a 
result, multiple advances have been made that shed light 
on both the function and structure of the brain. These, in 
turn, provide new understandings of mental processes 
and their relations to behavior (see Lieberman, 2007 and 
Yarkoni, 2010 for extensive reviews). Researchers from 
a growing number of business disciplines are starting to 
leverage neuroscientific techniques to capture 
fundamentally new insights about their areas of inquiry. 
For instance, in marketing, Venkatraman et al. (2015) 
show that neural data is better at predicting advertising 
success as compared to traditional measures such as self-
report purchase intents; in leadership, Waldman et al. 
(2016) advance a neural index that underpins ethical 
leadership; in finance, Bruguier et al. (2010) use neural 
data to advance our understanding of trader intuition.  

Within the vibrant scholarly domain of neuroscience, 
inroads into entrepreneurship remain limited (De Holan, 
2014; Krueger and Welpe, 2014; McMullen et al., 2014; 
Nicolaou and Shane, 2014). This is rather surprising 
because, given that the field has much to gain from taking 

research in this direction. Most entrepreneurship research 
relies on data from subject’s recall, responses to 
developed scales, surveys, and secondary data analysis 
where underlying mental processes are not directly 
observed. In essence, the mental processes in the 
entrepreneurial setting are generally treated as a ‘black 
box’. We argue that incorporating a neuroscientific 
approach can bring into focus a new level of knowledge, 
generating more nuanced insights that pertain to the 
mental processes which are central to many aspects of 
entrepreneurship. The potential of neuroscience within 
entrepreneurship, then, appears significant and may 
“change the way we see the entrepreneur, the 
entrepreneurial process and entrepreneurial management 
in general” (De Holan, 2014, p. 95). 

This paper examines the potential of employing 
neuroscience in facilitating a better understanding of the 
mental processes of individuals engaged in the 
entrepreneurial setting. We first explore the promise of 
this research avenue by delineating its potential 
significance. Doing so, we put forward an overview of 
neuroscience and several key methodologies. Second, we 
delineate a set of research topics and research questions 
that can be augmented with neuroscience techniques and 
add greater understanding and insights to what we 
already know about entrepreneurship — placing focus on 
automaticity, individual-level differences, construct 
clarity, and entrepreneurial learning. Third, we present 
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several salient challenges of neuroscience research as 
applied to entrepreneurship. We conclude by discussing 
the implications of neuro- entrepreneurship for the 
existing domain of entrepreneurship research.  

Adding to the nascent biological perspective of 
entrepreneurship (cf. Bönte et al., 2015; Nicolaou and 
Shane, 2009; Nicolaou et al., 2017; Shane and Nicolaou, 
2015; Unger et al., 2015), this paper offers an in-depth 
overview of neuroscience and how it might go forward in 
entrepreneurship research. Viewed broadly, much as 
conceptual pieces have drawn attention to and kickstarted 
research across other sub-disciplines of neuroscience, 
such as neuro-strategy (Powell, 2011), our efforts lay a 
foundation for neuroscience-entrepreneurship research 
and call attention to its potential for advancing 
entrepreneurship scholarship. Collectively, the result is 
headway toward the establishment of a new sub-field—
neuro-entrepreneurship—from which future researchers 
can develop.  

THE PROMISE OF NEURO-
ENTREPRENEURSHIP 

Entrepreneurial Thinking  

Decisions made in the entrepreneurial context have a 
significant impact on the individuals involved, the 
organizations they create and those whom the 
organization touches. Given the magnitude and 
importance of such decisions, researchers have long 
probed how individuals conceive of and develop new 
concepts (Choi & Shepherd, 2004), how they connect 
previously unconnected dots (Baron, 2006), and the 
reasoning that is used to arrive at decisions (Busenitz & 
Barney, 1997). Likewise, there has also been significant 
interest in entrepreneurs and how they may differ in their 
desire for achievement, the way they view risk, their need 
for control, and lack of conformity, among others. 
Furthermore, interest in entrepreneurial decision-making 
extends to investors that include business angels, venture 
capitalists and crowdfunders (Guler, 2007; Hildebrand et 
al., 2017; Huang and Pearce, 2015; Mitchell et al., 2002; 
Zacharakis and Meyer, 1998). Additionally, the first two 
decades of the 21st century have seen the emergence of 
entrepreneurial opportunities and understanding how and 
why they are recognized and exploited (Eckhart & Shane, 
2003; Shane, 2000). Across all of these tangential areas, 
a common theme is an increasing implicit and often 
explicit focus on better understanding how individuals 
within the entrepreneurial setting “think”, and process 
information.  

Investigating mental processes in the entrepreneurial 
setting, scholars have utilized a variety of approaches 

such as self-report data (MacMillan et al., 1987), surveys 
(Murnieks et al., 2011; Gregoire and Shepherd, 2012) 
secondary data analyses (Allison et al., 2013), and 
qualitative techniques (Hindle, 2004). Aside from a few 
studies leveraging biology and behavioral genetics 
(Bönte et al., 2015; Nicolaou & Shane, 2009; Nicolaou et 
al., 2009; Shane & Nicolaou, 2015), present 
understandings tend to flow from approaches where 
inferences are drawn from attributes of observable 
actions and retrospective recollection. Yet, these 
techniques are subject to fundamental constrains because 
little can be directly observed on how the underlying 
decision and cognitive processes unfold. Thus, while 
inquiry of entrepreneurial thinking has emerged as an 
important area of entrepreneurship research, its progress 
is not without limitations. In light of the historical 
reliance on indirect observational data gives rise to the 
potential of exploring how neuroscience can augment our 
understanding of the mental processes that unfold within 
the entrepreneurial setting.  

We believe that neuroscience can provide researchers 
important tools to enhance our understanding of 
entrepreneurship. Neuroscience can offer a novel and 
promising approach from which to improve our 
knowledge on how mental processes of entrepreneurial 
actors are carried out in the brain — processes that are 
otherwise difficult or impossible to detect through more 
traditional research methods. As Camerer et al. (2005, p. 
10) notes: the “study of the brain and nervous system is 
beginning to allow direct measurement of thoughts and 
feelings. These measurements are, in turn, challenging 
our understanding of the relationship between mind and 
action, leading to new theoretical constructs and calling 
old ones into question.” Thus, the increasing availability 
and sophistication of neuroscience analytical approaches 
and methods offer a largely untapped line from which to 
launch inquiry — the brain — thereby complementing 
and potentially extending the ways entrepreneurial 
cognition is traditionally studied and understood 
(Krueger and Welpe, 2014; McMullen et al., 2014). 
Because neuroscience in entrepreneurship “has been 
lacking and holds the potential to address important 
unanswered questions in the field” (Nicolaou & Shane, 
2013), we seek to chart a path forward for this stream of 
research. We argue that the adoption of neuroscience 
offers the unique opportunity for providing the field a 
new apparatus with which to better understand 
entrepreneurial thinking. We suspect that our present 
understandings and assumptions will likely be challenged 
and open doors for new frontiers, which will be explored 
by our capacity to advance our comprehension of 
entrepreneurial mental processes as they unfold.  
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Advancing a neuroscience perspective requires a 
foundational understanding of what neural data can offer 
to entrepreneurial research. A central challenge of any 
cross-disciplinary work, and certainly with neuroscience, 
is that it necessitates knowledge foundations in both 
domains. In seeking to accelerate the learning curve for 
entrepreneurship researchers, we now offer a synopsis of 
neuroscience and the emergence of some key 
methodologies.  

NEUROSCIENCE FOR ENTREPRENEURSHIP 

In past few decades, neuroscience research has 
considerably advanced the study of the human nervous 
system and behavior. In particular, the emergence of 
brain imaging techniques, most notably EEG and fMRI, 
has opened novel opportunities to better understand the 
neural basis of people’s decisions and mental processes 
(e.g., Dolan, 2002; Klimesch, 1999; Sanfey et al. 2003). 
Here, the study of the brain has resulted in an improved 
understanding of key brain regions, and knowledge about 
how activations in certain regions underpin individual 
thought and behavior. The study of automaticity, for 
instance, sheds light on the quick and intuitive neural 
region activations that augment current understandings 
about individual thinking and behaviors (Jeon & 
Friederici, 2013; Winston et al., 2002). Thus, through 
observing neural activity while engaging in carefully 
designed tasks, researchers continue to make impressive 
advancements through the direct observation of brain 
activations. Specifically, in the last two decades, 
neuroscientists have mapped key neural sites that are 
implicated with processing that is essential for the 
understanding of the underlying mechanisms of decision-
making (e.g., the anterior cingulate and orbitofrontal 
cortices and their interplay with the supplementary and 
pre- supplementary motor areas to generate an action), 
emotion (e.g., from the regulation of the emotion by 
orbitofrontal cortex to the manifestation of ones in areas 
such as the amygdala), reward and learning (e.g., the 
nucleus accumbens and the ventral-tegmental areas), 
memory (e.g., interplay between frontal regions and the 
gateways to memory processing such as the 
hippocampus), attention (e.g., numerous sites ranging 
from the inferior-temporal areas and the inputs from 
various senses that lead to the binding of a coherent 
experience), and more.  

Given this progression, the increased interest in the 
human brain within business disciplines is unsurprising. 
This attention has resulted in calls and efforts to better 
understand the neuro- cognitive foundations of strategic 
processes (Powell, 2011), organizational behaviors 
(Becker & Cropanzano, 2010), leadership (Waldman et 
al., 2011), finance (Bruguier et al. (2010), among others. 

Moving to consider the application of neuroscience to 
entrepreneurship, a logical starting point is introducing 
and establishing working knowledge of the key 
neuroscience methods that are optimally suited for the 
study of entrepreneurial thinking. Here, we specifically 
focus on two methods that, due to their characteristics 
and potential, offer viable paths for investigating 
entrepreneurial cognition: electroencephalography 
(EEG) and functional Magnetic Resonance Imaging 
(fMRI).  

Electroencephalography (EEG)  

Overview. Electroencephalography (EEG) is a non-
invasive technique which records electrical signals of the 
brain by using electrodes positioned on a subject’s scalp. 
EEG has been utilized in neural research for decades. 
Undergoing steady technological advancements, EEG 
remains a ubiquitous method given its many advantages. 
The physiological basis of the EEG signal originates in 
the currents of specialized projections of cortical neurons 
(i.e., postsynaptic dendrites) (Nunez, 1981). Indeed, 
neurons are the “atoms of cognition” (Fried et al., 2014) 
and are excitable cells that allow information flow 
through electrical and chemical signals. EEG measures 
voltage fluctuations resulting from ionic current within 
the neurons of the brain. By measuring the residual 
fluctuations of those current researchers can have 
subjects engage in a wide range of tasks while observing 
the electrical activity that stems from brain regions of 
interest. 

For signals to produce an electrical field large enough to 
be detectable at the scalp, a group of neurons, aligned in 
parallel, must be active in synchrony. While necessary, 
this orientation requirement also represents an intrinsic 
constraint of the technique, because it allows recording 
only from brain areas in which neurons are arranged in 
this way. Simply put, this indicates that with EEG it is 
difficult to directly assess brain structures located below 
the outer (cortical) layer. Nonetheless, EEG is well suited 
to record cortical activity, and it has excellent temporal 
resolution: recording activity at frequencies as high as 
1000Hz, which is the timescale by which neurons activity 
is exhibited (typical neurons burst are at the order of 
milliseconds). Indeed, because changes in the electrical 
signals associated with cognitive process are conducted 
instantaneously at the scalp, EEG is exceptionally suited 
to appreciate the timing of a cognitive event (Sutton et al. 
1965).  

In order to record such variations, a standard EEG 
apparatus uses a multichannel amplifier connected to 
several conductive electrodes (with a typical research 
setting holding between 32 up to 128; or more in high-
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density devices) placed on the subject’s head and usually 
inserted in a wearable head cap. It often takes time to 
prepare the EEG, because it requires the precise 
placement of the electrodes and the use of conductive 
gels or solutions (typical setting of 32- electrode EEG 
system ranges between 10-20m for experienced 
researcher. Larger number of electrodes clearly require 
more time but lead to higher accuracy in the reading). The 
electrodes must be arranged at various locations on the 
scalp, which are usually described with reference to the 
“International 10–20 System” (Klem et al., 1999 for a 
review). The electrodes are labeled with a letter, 
indicating their anatomical location (C = central; F = 
frontal; O = occipital; P = parietal; T = temporal), and a 
number indicating the hemisphere (odd numbers are used 
for recordings from the left hemisphere; even numbers 
for the right hemisphere; “z” labels the midline). The 
acquired signals are then digitized into a computer, 
processed, and analyzed.  

  
Figure 1. Left: EEG in use. Right: Typical “montage” of 

electrodes placed on a subject’s head – from above. 

Frequency Analyses. EEG records spikes and waves in 
the electrical activity of the brain, which oscillate at 
different rates or frequencies. Standard frequency waves 
that are correlated with specific behaviors are named. 
These include alpha waves, with oscillations in the 7 to 
13 Hz range; beta waves, in the 13 to 20 Hz range; and, 
gamma waves in the 20 Hz and above range. Delta and 
theta waves are in the 1-4 Hz and 1-8 Hz ranges, 
respectively. Other wave bands exist and reflect more 
nuanced frequencies that are relevant for specific 
research areas.  

While these frequencies naturally occur, several efforts 
have been made to link patterns of oscillations to 
distinctive cognitive functions (Başar et al., 2001). For 
example, alpha waves at the back of one’s brain 
(electrodes O1 and O2) are often implicated with 
increased visual attention in a task. Yet, due to low 
specificity and the traditional reliance on visual analyses 
of the waveforms, early attempts of mapping a frequency 
band with a particular cognitive process were also often 
imprecise (as reported in Harmon-Jones and Peterson, 
2009). More recently, however, the increasing use of 
spectral power analyses has offered more robust 

approaches (e.g., Fitzgibbon et al., 2004). For example, 
research in personality has examined differences in the 
frontal cortical activity, in particular in relation to 
emotional processes. Research has shown that greater 
relative left and right frontal EEG activities, measured as 
alpha power asymmetry, relate to individual differences 
in positive and negative affect respectively known as 
“approach-avoidance measures” (Tomarken et al., 1992). 
This evidence has in turn offered a neurophysiological 
basis to the so called “affective valence hypothesis” 
(Harmon-Jones and Allen, 1998).  

Event-Related Potentials (ERPs). A common index of 
brain activity related to EEG signals are ERPs. ERPs 
refer to averaged EEG responses that are the direct result 
of a specific cognitive event or stimulus (Teplan, 2002). 
When EEG is recorded during an experimental task 
involving specific events, it is possible to examine those 
EEG periods (epochs) that expose neural processes 
distinctively associated to those occurrences. Thus, while 
wearing an EEG cap, respondents engage in a series of 
repeated manipulated conditions, or trials, where the 
neural responses to such conditions are then averaged. 
ERPs is a reliable method to study the physiological 
correlates of cognitive activity associated with 
processing information (Handy, 2005), however it 
requires significant number of repeated trials to be able 
to average the signal from noisy fluctuations that often 
occur spontaneously.  

The signals are represented graphically by plotting time 
(in milliseconds) on the x-axis and electrode potential (in 
microvolts; the impendence level of typical EEG 
electrode) on the y-axis. The resultant chart consists of a 
series of positive and negative peaks for each electrode, 
each with a slightly different outline. The peaks are 
labeled with “P” (positive) or “N” (negative) and 
numbered. For instance, P1, P2, and P3 refer to the first, 
second, and third positive peaks, respectively. 
Alternatively, they can be marked with the timing of the 
peak (i.e., P300 refers to a positive peak at 300 
milliseconds). It is worth noting that the polarity of a peak 
has little meaning in cognitive terms, nor does a positive 
peak reflect excitation, and a negative peak inhibition (if 
anything, in most EEG systems those are reversed, as the 
reading of the ionic discharge from the outside of the 
neurons is opposite in polarity to the actual discharge in 
the cell). These labels mostly depend on the spatial 
arrangement of neurons giving rise to the signal at that 
particular moment in time. However, the characteristic 
peaks and troughs of the ERP waveform can be linked to 
cognition by assessing timing, latency, and amplitude of 
the peaks (e.g., Polich and Kok, 1995). For example, 
showing subjects repeatedly images of faces vs. objects 
and then averaging the neural activity at the onset of a 
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face image will often yield a consistent increase in EEG 
reading at the 300-millisecond mark (P300) in temporal 
electrodes.  

 
Figure 2. Sample EEG results. 

The difference of the ERP signal are named components 
or deflections the most common being N1, P3, N100, 
P300, (Donchin, 1981). Traditionally, ERP components 
have been classified as either exogenous (or evoked 
potentials), which depend on the physical properties of 
the task such as size or intensity, or endogenous, which 
rely the subjects’ intensions and can also occur in the 
absence of an external stimulus. Importantly, another 
way to classify ERP data is to consider the ‘time-locked’, 
‘response-locked’ or ‘anticipatory’ waves (Amodio et al., 
2014). These terms refer to the way the epochs of the 
EEG signals are combined during the averaging process. 
For instance, in the stimulus-locked waveform all the 
epochs are averaged to the time of the stimulus onset; in 
the response-locked waveform they are aligned to when 
the task response is made by the subject. Anticipatory 
responses occur prior to the stimulus onset.  

ERP research has been widely exploited to inform the 
unobservables that underpin thinking and action. For 
instance, Cacioppo et al. (1993) have shown that the P3 
amplitude is often augmented when a stimulus represents 
a category different from a precedent stimulus (i.e., the 
oddball paradigm). Because attitude characterizes 
evaluative categorizations, they showed that subjects’ 
inconsistent attitudes elicit larger P3 than consistent 
attitudes. These results have thus offered evidence in 
support of studying personal attitudes with a 
methodology that does not rely on self-reported data, as 
formerly done (Ito and Cacioppo, 2007).  

Strengths and Weaknesses of EEG. Notwithstanding 
some limitations — namely, the low spatial resolution 
(inability to differentiate specific regions), the challenges 
in detecting inner brain region activity, the poor signal-
to-noise ratio and the lengthy set-up preparation time — 
EEG offers a number of benefits to cognitive research in 

entrepreneurship. The costs are significantly lower than 
those of most other neuroimaging techniques, often a 
fraction of alternative approaches. Moreover, the method 
is silent, and does not generate any potentially distracting 
noise. In addition, it is more portable than other 
approaches, allowing for greater flexibility in the data 
collection setting. Notably, recent EEG technologies are 
wireless, allowing for the exploration of neural activities 
in unprecedented ways (e.g., group/team interactions, 
etc.). In terms of research design, ERP studies can be 
conducted with relatively simple paradigms. As 
discussed, EEG has excellent temporal resolution which 
makes it feasible to link to neural processes in the brain. 
ERPs also allow the measurement of electro-
physiological variation associated to when the subject is 
not attending to the stimuli, thus informing interactive 
properties of stimuli and stages of processing (Sereno et 
al., 1998). Finally, unlike fMRI or other imaging methods 
that rely no signal that is not directly neural, the 
mechanisms by which the brain elicits the response 
measured by EEG are fully understood and one can tie an 
effect directly to a brain activity.  

In recent years, other EEG-based approaches have 
emerged. In clinical and leadership research, for 
example, quantitative EEG (qEEG) has found increasing 
attention (Waldman et al., in press). Indeed, while EEG 
frequency analyses cannot provide direct information on 
anatomical origins of signals, qEEG offers topographic 
display and analysis of brain electrophysiological data by 
leveraging on Fourier analysis of the EEG signal. 
Likewise, technological advancements are offering 
opportunities of dry sensors. Dry sensors are ones that do 
not require additive gel to be placed between the scalp 
and the electrode for reduced noise, thus allowing both 
increased accessibility and reduction of preparation time. 

Functional Magnetic Resonance Imaging (fMRI)  

Overview. The brain can be visualized by using both 
structural and functional imaging. Magnetic resonance 
imaging (MRI) is one of the most commonly used 
structural imaging techniques that leverages nuclear 
magnetic resonance principles (Lauterbur, 1973; 
Mansfield and Grannell, 1973), allowing the 
visualization of different types of brain tissues — gray 
matter, white matter, and cerebrospinal fluid. Functional 
MRI (fMRI) measures brain activity by capturing 
changes associated with blood flow in the brain 
(Logothetis et al., 2001; Ogawa et al. 1990); differently 
from EEG, fMRI does not directly measure neurons’ 
activity, but rather the residues of the blood flow in the 
brain as a proxy for neural activity. In fact, fMRI 
primarily relies on variations of the signal associated with 
the level of oxygenated blood in a given region of the 
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brain (BOLD or blood-oxygenated level dependent 
signal) (Ogawa et al. 1990). Indeed, it is important to 
appreciate that our brains, like any other part of our body, 
consume oxygen, carried in circulation by hemoglobin, 
and glucose at variable rates depending on the level of 
activity required. Thus, when a particular brain region is 
actively engaged in a task, blood flow increases (Mosso; 
see Zago et al., 2009) so that it can quickly use the 
nutrients available at that moment, also turning 
oxygenated hemoglobin into deoxygenated. The way in 
which BOLD signal evolves in response to an increase in 
neural activity is called the hemodynamic response 
function (HRF), which is characterized by distinct 
phases. The HRF is generally stable in the same 
participant in the same brain region. Yet, it varies 
between participants and across different brain regions 
(Aguirre et al., 1998). Thus, as subjects engage in tasks, 
dynamic maps of the moment-to-moment activity of the 
brain during a cognitive task can be modeled.  

fMRI research is performed with a MR scanner, a very 
powerful, large and loud magnet, capable of generating 
magnetic field several thousand times stronger than the 
Earth’s magnetic field. The magnet’s strength is 
measured in Tesla (T) and a typical scanner for fMRI 
research has a field strength of 1.5T or 3T. During an 
fMRI measurement one subject lays inside the bore of the 
magnet, and the magnetic field is applied constantly 
across the brain, while the subject is either resting or 
preforming a simple cognitive task. The signals are then 
analyzed through a series of complex passages and fMRI 
images are constructed according to voxels–3D pixels 
carrying volumetric information on the brain. Hence, the 
spatial resolution of fMRI depends on  

the size of the voxel, usually around 1mm3. Using fMRI, 
there is a delay in temporal resolution, where the blood 
flow to a certain brain region is lagged by a few seconds 
after the region has been activated. Notably, because 
magnetic fields can penetrate the skull, fMRI produces a 
reading of the whole brain, or a high-density image of a 
specific brain location – including structures buried deep 
inside our heads. Therefore, unlike EEG, fMRI is able to 
yield indicators of neural responses in sites that are deep 
beyond the cortex.  

 
Figure 3. fMRI in use. 

Blocked and Event-Related Designs. The consideration 
of which stimuli to employ in fMRI research is a 
paramount step of a study’s research design. Due to the 
considerable noise in the BOLD signal, multiple 
repetitions of a condition are required to gain sufficient 
power and reliability. Two main categories exist: block 
and event-related designs (see for review Amaro and 
Barker 2006).  

In the block design, multiple stimulus repetitions that 
belong to the same experimental condition are grouped 
together. Each block lasts around 20-40 seconds (given 
that a typical neural decay of the blood flow is in the order 
of seconds) and there is a minimum of 2 to 4 blocks per 
condition. Clearly, the more repetitions the more reliable 
the signal. With such designs, the collection of cognitive 
and behavioral measures is possible for statistical 
analyses across participants. In the event-related case, 
different stimuli or conditions can instead be scattered 
with each other and separated during data analysis. 
Importantly, the event-related design allows both across- 
and within-participant analyses (Josephs et al., 1997).  

Block designs have an advantage over event-related 
designs because they have more power — i.e. they 
capture significant but small effects. Yet, a major 
limitation of blocked designs are situations in which it is 
challenging to know how stimuli behave relatively to 
each other, and therefore they cannot be grouped. In these 
cases, event-related designs enable a wider range of 
experimental designs and more adherence to the 
traditional format of psychological and behavioral 
experiments (Josephs & Henson, 1999). Mixed blocked- 
and event-related designs are also increasing popular 
avenues in functional neuroimaging research 
(Donaldson, 2004).  

Experimental Strategies. There are several ways to 
design a task for an fMRI experiment. One of the most 
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common is that of cognitive subtraction, which compares 
the activity in different brain regions in response to a 
particular cognitive task (Friston et al., 1996). This 
design compares two brain states that are believed to 
differ in the independent variable only. The rationale 
relies on the assumption of “pure insertion”: A single 
cognitive process can be inserted into a task without 
affecting the remaining processes, and there are no 
interactions among the cognitive components of a task. 
For these reasons, the choice of a baseline is crucial in 
this type of experiments because it needs to be as similar 
to the experimental task as possible in order to accurately 
reveal the specific regions involved in the cognitive 
processing (Logothetis, 2008).  

Another widely used method is that of cognitive 
conjunction, which allows the assessment of regions of 
activation that are shared across several different stages 
of a cognitive process (Price and Friston, 1997). Typical 
studies are designed so that two or more distinct tasks 
share a common processing difference. The neural 
correlates of the process of interest are then associated 
with the common areas of activation for each task pair. 
This approach does not depend on pure insertion and 
offers more flexibility in the choice of the baseline. While 
a baseline is still required, the problem of interactions 
between brain regions involved in multiple processes is 
reduced.  

In a parametric design, the variable of interest is instead 
treated as a continuous dimension, which essentially 
means it has an infinite possible values. This approach 
measures associations between brain activity and 
changes in the variable of interest rather than differences 
in brain activity between conditions as in the other types 
of design. Parametric designs use correlations for data 
analysis and the effects of the experiment are usually 
evaluated globally across all levels of the factor.  

Finally, the approach of functional integration models 
how different brain regions’ activities influence each 
other (Van Den Heuvel, 2010). This allows inferring the 
effective connectivity or functional connectivity between 
regions when performing a task. This approach relies on 
Principal Components Analysis (PCA; which transform 
possibly correlated variables orthogonally into linearly 
uncorrelated variables) to reveal the overall variance 
between groups. Recently, functional integration studies 
have been designed without a definite experimental task 
which are known as resting state paradigms: participants 
are asked to lay back and rest and the fluctuations in brain 
activity are measured (De Luca et al., 2006).  

Given that many of those techniques begin with an 
hypothesized neural site that is suspected to be involved 

with the task at hand, prior to any experimental design, 
researchers often engage the subject in a ‘masking’ task, 
or ‘ROI’ task. The masking task is one that was 
previously identified to elicit specific known activity in a 
certain area (i.e. emotional images which generate 
consistent predictable activity in the area known as the 
amygdala). This allows for the localization of the area in 
the subjects brain precisely, which is later used for 
alignment of the results to the specifics of the brain and 
the certainty in identification of the relevant areas for a 
task.  

fMRI Data Analysis. As it happens with EEG analyses, 
also fMRI data requires complex pre- and post- 
processing steps performed with dedicated algorithms 
and procedures. The first step in pre-processing is usually 
the slice timing correction (Sladky et al., 2011). Because 
the MR scanner acquires different slices of the brain at 
different times, each slice shows brain activity at a 
different time, therefore a timing correction is applied to 
bring all slices to the same reference.  

Another main passage is the correction for head 
movement: if a participant moves their head in the 
scanner also the position of any active region moves 
(Thesen et al., 2000). This can result in a given region 
being more difficult to detect, due to the activity being 
dispersed, or in a false- positive. Additionally, to 
dedicated algorithms, head movements can also be 
minimized by physically restraining the head in position, 
and instructing the participants to keep as still as possible.  

Stereotactic normalization, which involves mapping 
regions on each individual brain onto a standard brain, is 
another important data processing stage (Thirion et al. 
2006). Each brain is divided up into thousands to millions 
of voxels, each with spatial coordinates mapped onto the 
corresponding coordinates on any other brain. 
Mathematical transformations are applied to each brain 
image to fit it into a standard space, generally provided 
by the brain atlas of Talairach and Tournoux (1988).  

Finally, smoothing enhances the signal-to-noise ratio and 
is an advantage for analyzing groups of subjects. 
Smoothing increases the spatial extent of active regions 
by “spreading” the activation signal to neighboring 
inactive voxels. It thus increases the chance of finding 
common regions of activity because the procedure 
involves averaging the activity across individuals. Yet, 
clearly, if a study focuses on individual differences, 
researchers would generally waive this step (Hagler et al., 
2006).  
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Figure 4. Sample fMRI data. 

Strengths and Weaknesses. Several approaches are 
available for setting up experiments in functional 
Magnetic Resonance Imaging, which makes it a versatile 
technique applicable to different types of cognitive tasks 
in entrepreneurship research. It is therefore important to 
ensure that each strategy is fitting the research question 
and hypotheses being tested. It is also worth noting that 
there are several reasons why a brain region may be 
active, and not all of them may be always relevant to an 
experimental task. For instance, an increase in signal 
could reflect the strategy that the participants happen to 
adopt in the task, or some general mechanism not specific 
to the task, such as increased attention, or even represent 
unrelated physiological processes such as inhibition of 
neural activity. Moreover, there is a general assumption 
of linearity between the BOLD signal and the baseline 
activity, and the technique is not well-suited for 
investigation of long-term changes in neural activity, 
such as in neurofeedback protocols.  

Aside from these limitations, which are anyway well 
known within the neuroimaging community and should 
not be a reason to detract this method, conducting fMRI 
research has more timely drawbacks. fMRI research is 
considerably expensive, with sessions typically ranging 
from $500 to $1000 per hour, or subject. Further, the 
physics of the technique do not allow it to be performed 
outside the MR suite, thus raising issues of ecological 
validity. Finally, the fact that fMRI results typically yield 
thousands to millions of voxels suggests that, at random, 
certain number of voxels are likely to correlate with a 
behavior. If the analysis does not correct for multiple 
comparisons then most fMRI studies will in fact find a 
brain region that miracoulsly seems to correlate with a 
behavior. This seemingly easy-to-fix statistical fluke is 
actually rampant in numerous fMRI studies and yielded 
a large controversy as to whether much of the results are 
in fact true. Meta-analysis of fMRI studies time and again 
reveal malpractices in the analysis that draw incorrect 
conclusions.  

Nonetheless, fMRI has clear benefits over other 
neuroimaging methods if the researcher is interested in 
higher spatial reading at the expense of rapid temporal 
resolution. Spatial accuracy allows for fine-grained 
distinctions between sub-regions that specialize in a 
particular function. Ultimately, simultaneous recording 
with EEG and fMRI (i.e., co-registration) is an emerging 
approach in neurocognitive research that allows for 
complementing the strengths of both methods (Laufs et 
al., 2003).  

APPLICATIONS TO ENTREPRENEURSHIP 

We next focus on several areas of entrepreneurship 
research to illustrate how they may potentially be 
expanded via the integration of neuroscience. The 
application of these techniques holds potential to offer 
unique complementary data, create new insights beyond 
what currently exists, and to explore brain underpinnings 
associated with entrepreneurship theories. Illustrating 
how neuroscience may advance research in 
entrepreneurship, we specifically focus on discussing 
automaticity, individual-level differences, construct 
clarity, and entrepreneurial learning as potential research 
directions, respectively. We also note several challenges 
of neuro- entrepreneurship research in Table 1 below.  

 
Figure 5. Key research directions in Neuro-

Entrepreneurship. 
   
Challenges Description Proposed Solution 
Cross-
Disciplinary 
Teams 

Divergent reward 
structures 

• Collaborating with 
business school- 
based 
neuroscientists (as 
with this project) 

• Multiple projects 
from data 
collection efforts 
targeting multiple, 
yet different, 
research domains 
suitable to both 
neuroscience and 
business journals 

Knowledge 
Foundations & 
Culture 

Knowledge 
foundations 
fundamentally 
differ. The culture 
of the fields of 
business vs. 

• Committing to time 
investment that 
leads to a thorough 
understanding of 
respective 
disciplines  
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neuroscience leads 
to numerous 
clashes on the 
research style. 

• Flexibility in 
adapting to 
differing cultural 
norms  

• Generate journals 
that are dedicated to 
the field 

Cost The collection of 
attaining neural 
data can be 
prohibitively 
expensive  

• Cost sharing with 
coauthors and 
neuroscience labs  

• External (grant) 
funding -Judicious 
Pilot Testing 

External Validity Data collections in 
unnatural settings 

• Appropriate 
research questions 
and experimental 
design  

• Triangulation 

Table 1. Challenges of Neuro-Entrepreneurship research 
and proposed solutions. 

Can neuroscience inform automaticity in 
entrepreneurship?  

A key strength of neuroscience is the capacity to observe 
the previously unobservable in the brain. The ability to 
capture automaticity, or the automatic and often non-
conscious processing that occurs stands as a hallmark 
example. Automatic processes have long been argued to 
be a longstanding component of judgment and decision 
making research (e.g., Chaiken and Eagly, 1989; Tversky 
and Kahneman, 1975), where neuroscientists continue 
adding evidence that supports this notion, regularly 
highlighting that at least 90% of all brain activity never 
reaches consciousness. Neuroscience data in particular, 
sheds light on automatic brain activations that underpin 
judgments, decisions and behaviors (Bryant et al., 2008; 
Öhman, 2002; Tamietto and De Gelder, 2010; Tusche et 
al., 2010; Venkatraman et al., 2012, 2015). Here, it is 
suggested that nonconscious processes serve as a 
cornerstone that guides behaviors prior to consciousness 
(Bechara et al., 1997). As such, much can be learned from 
direct observation of mental processes. The domain of 
neuro-marketing or consumer neuroscience, for example, 
largely focuses on capturing neural mechanisms linked to 
consumer purchase intentions — particularly those 
occurring beyond the evaluator’s conscious recognition 
(Ariely and Berns, 2010; Meckl- Sloan, 2015; 
Venkatraman et al., 2015). A growing number of studies 
illuminate such links, where, for instance, distributed 
activation across the anterior insula and medial prefontal 
cortex during preference ratings of cars reliably predict 
purchase preferences before decisions were made — 
even prior to respondents’ awareness of their task to 
reveal their purchase preference (Tusche et al., 2010). 

Similarly, neural data can provide important, previously 
unobservable clues into the workings of the mind — 
particularly outside of conscious awareness.  

Shifting to the area of entrepreneurship, there are many 
areas of inquiry where the observation of automatic 
responses could further inform important evaluations and 
decision processes. For example, significant research 
attention has been devoted to understanding how and 
why external stakeholders, such as venture capitalists 
(VC), angel investors, and Initial Public Offering (IPO) 
investors, make decisions about funding young, 
entrepreneurial firms (e.g., Huang and Pearce, 2015; 
Martens et al., 2007; Zacharakis and Meyer, 1998). 
While considerable work has established characteristics 
of the opportunities and the cognitive processes 
influencing such evaluations, we presently lack evidence 
on the automatic processes that influence these unique 
decisions. Here, extant research from the fields of 
psychology and neuroscience make clear that decisions 
are influenced by, and largely predicated on fast, non-
conscious processes — yet such processes stand largely 
unaccounted for across the entrepreneurial setting. Guy 
Kawasaki, a prominent VC, hints at the potential salience 
of such processes by noting: “In the first five, ten, or 
maybe fifteen seconds [investors] decide...And that has 
important consequences.”  

Neuroscience techniques hold the potential to offer a first 
look into the key influences or automatic neural 
processes that shape decision making — stages much 
earlier than what most investors can consciously or 
retroactively articulate with accuracy. Such approaches 
could allow us to begin tapping into the key neural 
processes that underpin how investors assess investment 
prospects in this unique decision context, such as viewing 
the entrepreneur’s pitch. Early activation in the ventral 
striatum, for example, may be particularly relevant given 
its link to the reward system — and in particular 
motivations for ‘wanting’ versus simply ‘liking’ an 
object (Knutson et al., 2007). Are there early neural 
predictors, such as the ventral striatum, that, if triggered, 
set decision makers on a path to more or less favorably 
evaluate an opportunity? Are there activations that must 
occur within a certain time frame for a favorable 
evaluation? How do the relevance and predictive utility 
of various automatic processes differ when evaluating 
different types of entrepreneurial investment 
opportunities, such as financial- or social-focused 
opportunities? What role do neural responses shown to 
automatically imitate those of another (e.g., a pitching 
entrepreneur or other investors) play in shaping investor 
evaluations? Along the same lines as neuro-marketing, if 
we can first understand the relevant neural substrates at 
play with favorable (or unfavorable) entrepreneurial 
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investment evaluations — particularly those that are 
otherwise hidden — we can draw on extant neuroscience 
research to reverse engineer the entrepreneur’s pitch, 
emphasis, and/or approach to increase the odds of tapping 
into (or avoiding) critical neural activations. In exploring 
the neural activity of investors, controlled experiments 
could be deployed as investors evaluate a series of 
carefully manipulated entrepreneur pitch videos or 
abbreviated business plans while undergoing brain 
imaging.  

In sum, adding neuroscientific data could begin shedding 
light on key processes that occur outside of conscious 
awareness. Doing so could help to refine theory and 
current understandings about the nature of automaticity 
in the entrepreneurial setting — venture investors and 
beyond.  

Can neuroscience inform individual differences in 
entrepreneurship?  

Neuroscience research has long explored how differences 
across individuals can be observed through neural 
processes (DeYoung and Gray, 2009; Eddington et al., 
2007; McRae et al., 2008) — e.g., “Neuroimaging...has 
begun to identify how variability in brain function 
contributes to individual differences in complex 
behavioral traits” (Hariri, 2009). Because neuroscientific 
approaches have been useful in the development and 
advancement of theory explaining various elements of 
such differences, they are poised to prove useful in the 
study of entrepreneurship.  

Key differences of individuals in the entrepreneurial 
setting should be traceable to the origin of where these 
differences manifest (i.e., the brain), thereby offering an 
avenue to enrich our current understanding of their nature 
and distinctiveness (McMullen et al., 2014).  

Seeking to understand how individual-level differences 
emerge in the realm of entrepreneurship has been the 
focus of significant research attention. Consider that 
efforts have been made to understand differences across 
individuals, particularly in their experience and 
willingness to engage in key entrepreneurial activities. 
Here, scholars have explored variation in entrepreneurial 
experience (e.g., entrepreneurs vs. non-entrepreneurs), as 
well as variation in individual levels of entrepreneurial 
alertness (cf. Baron and Ensley, 2006; Busenitz and 
Barney, 1997; Kirzner, 1999; McGrath et al., 1992; 
Stewart et al., 2001; Tang et al., 2012). Seeking a 
neuroscientific plausible explanation of such differences 
in entrepreneurship stands as a potentially profitable path 
to better understand the nature of such variance 
(McMullen et al., 2014). In this way, we could observe 

how neural processes vary as a function of being high and 
low on individual-level scales or thresholds, advancing 
an early foundation of a neuroscientific basis/theory of 
oft-studied individual differences in the entrepreneurship 
literature.  

Splitting samples by the median and observing neural 
activity of subjects as they evaluate a series of actual or 
manipulated entrepreneurial opportunities (Gregoire and 
Shepherd, 2012; Haynie et al., 2009), or while 
completing relevant tasks used in past neuroscience 
studies, such as creativity tasks (Dietrich, 2010; Fink et 
al., 2014; Shah et al., 2013), ambiguity tasks (Camerer, 
2007; Neta et al., 2013), or risk and reward tasks 
(Peterson, 2005; Rao et al., 2008) represents a viable 
path. For example, do neural differences emerge when 
comparing novice entrepreneurs to serial entrepreneurs, 
or entrepreneurs to non-entrepreneurs? It is conceivable 
to theorize that, given the role of optimism in 
entrepreneurship (Hmieleski & Baron, 2009), those with 
higher versus lower entrepreneurial experience, or 
entrepreneurs versus non-entrepreneurs, reflect greater 
activation in the rostral anterior cingulate cortex given 
the documented relation to optimism (Blair et al., 2013; 
Sharot et al., 2007). Do variations in entrepreneurial 
experience impact neural processes associated with 
intuitive decision making, such as differential use of the 
X-system and C-systems (Lieberman et al., 2004)? Do 
those with greater entrepreneurial experience reflect 
neural differences across key regions, such as the 
cingulo-opercular network (dorsal ACC [dACC]/medial 
superior frontal cortex and the bilateral frontal operculum 
[FO]/anterior insula), given their relation to tolerating 
and managing ambiguity? Experiencing adversity 
influences brain functioning in numerous ways (Boecker 
et al., 2014) — do neural responses to adversity vary as a 
function of those higher versus lower in entrepreneurial 
experience? Moreover, do those higher in alertness 
reflect greater activation in the left inferior parietal cortex 
due to its link to creativity and the generation of new 
ideas (Fink et al., 2014)? By extension, if we are able to 
uncover neural bases that are common to high and low 
segments of such individual differences, then exploring 
exercises and interventions that increasingly lead one to 
utilize such neural functioning may be plausible. In this 
way, the uncovering of key neural patterns may shed new 
light on the relative malleability of individual differences 
from a neuroscientific standpoint. Can neuroscience aid 
in informing whether and precisely how individuals can 
increasingly tap into the requisite neural functioning that 
results in a higher likelihood of entrepreneurial action?  

In sum, identifying a neural basis of individual 
differences in entrepreneurship, and the neural impact of 
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potential interventions holds the potential to generate rich 
insights going forward. 

Can Neuroscience inform key constructs in 
entrepreneurship?  

An advantage of neuroscience techniques is the ability to 
localize and differentiate constructs of interest. In this 
vein, neuroscientists regularly use brain imaging to map 
certain constructs to their underlying neural substrates. 
Doing so offers a fresh look into the neural activities 
associated with commonly studied constructs, and can 
shed light on their dimensionality and underlying 
mechanisms. Neuroscientists, for instance, have shown 
that brain regions associated with potential losses (loss 
aversion) or gains appear as distinct dimensions (Kuhnen 
& Knutson, 2005; Reimann et al., 2011; Tom et al., 2007; 
Trepel et al., 2005). Such insights offer clarification 
about why prospective losses are weighted more heavily 
than gains and that their activations are not mutually 
exclusive — having a number of implications for 
prospect theory. Moreover, based on fMRI scans, 
Dimoka (2010) has shown different neural correlates for 
trust and distrust, revealing how they represent distinct 
constructs. Here, trust activates brain regions, such as the 
caudate nucleus that is associated with positive reward 
anticipation, while distrust is linked to areas of intense 
negative emotions and fear, such as the amygdala, and 
insular cortex. These findings add to the debate on trust 
and distrust — namely that they do not reside on the same 
continuum, can co-exist, and that trust is more cognitive 
and calculated and deliberated while distrust is more 
emotional. Moreover, exploring distinctiveness across 
constructs via fMRI, Daw et al. (2006) advance 
ambidexterity in decision making, uncovering that 
exploration and exploitation, a fundamental paradigm for 
entrepreneurial cognition, have distinct neural correlates. 
In particular, frontopolar cortex and intraparietal sulcus 
are preferentially active during exploratory decisions, 
while regions of striatum and ventromedial prefrontal 
cortex exhibit activity characteristic of an involvement in 
value-based exploitative decision making. Collectively, 
it is clear that brain imaging technologies can offer 
unique evidence on the inherent nature of constructs of 
interest.  

Neuroscience tools may prove helpful in the localization 
and differentiation of commonly employed constructs in 
entrepreneurship. For example, scholars have 
investigated constructs such as doubt (McMullen and 
Shepherd, 2006; Shepherd et al., 2007) as a critical 
antecedent to entrepreneurial action. Do varying levels, 
such as high or low levels of experienced doubt around 
an entrepreneurial opportunity reside on a continuum, or 
might high and low of each be tied to fundamentally 

different neural functions — akin to trust and distrust? 
Understanding which neural regions are associated with 
high levels of doubt could help to better understand its 
underpinnings — perhaps providing new insights on its 
origination and role during controlled opportunity 
assessments. Importantly, mapping the neural correlates 
of key constructs in entrepreneurship also offers the 
potential to decipher the relation (or lack thereof) among 
multiple constructs of interest; put differently, exploring 
commonalities and distinctions across competing or 
tangential constructs is viable. Inquiries into the neural 
basis of constructs in the entrepreneurial setting can help 
uncover new differences and potential overlap. With 
regard to neural functioning, how does doubt differ from 
other important antecedents to entrepreneurial action, 
such as optimism? Is there significant overlap or clear 
points of distinction? Do neural functions associated with 
high levels of one impede the other, or are they distinct 
enough that their inverses can function simultaneously 
when assessing an opportunity?  

In sum, the localization and differentiation of constructs 
via neural data stands as a path to advance and clarify 
constructs that are often studied in the realm of 
entrepreneurship. 

Can neuroscience inform entrepreneurship 
education?  

While educational initiatives and learning, in general, are 
often examined through observational studies, 
longitudinal neuroscience studies offer a path to observe 
the resultant influences and changes on the brain (e.g., 
Bangert and Altenmuller, 2003; Dahlin et al., 2008; 
Stewart et al., 2003). Doing so can help to determine 
whether and how brain functioning changes as a result of 
training or learning. Neuroscience longitudinal research, 
for example, reveals shifting brain activation following 
certain training tasks (e.g., from parietal and occipital 
areas to temporal regions) (Poldrack et al., 1998; 
Kassubek et al., 2001; Thomas et al., 2009). Ilg et al. 
(2008) find changes in grey matter over time via 
practicing certain complex procedural learning tasks. 
Goswami (2006) notes that “...our understanding of the 
neural bases of the '3 Rs' — reading, writing and 
arithmetic — is growing rapidly. So is our understanding 
of how to optimize the brain's ability to benefit from 
teaching.” Thus, tools of neuroscience are beginning to 
offer a unique view into the brain’s response (or lack 
thereof) to education and learning.  

Given the surge of interest in entrepreneurship education 
activity (Kuratko, 2005; Vesper and Gartner, 1997; Bae 
et al., 2014; Henry et al., 2005; Martin et al., 2013; Rauch 
and Hulsink, 2015; Siegel and Phan, 2005), tools of 
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neuroscience may aid in better understanding the 
resultant impact. Here, entrepreneurship education 
efforts tend to operate under the assumption that 
entrepreneurship can be taught, where such initiatives 
ultimately result in cultivating entrepreneurs over time. 
But entrepreneurship education remains controversial: 
“very little evidence exists” on the impact of 
entrepreneurship education (Kauffman Foundation, 
2016), and “While many entrepreneurial education and 
training courses are being offered to entrepreneurs and 
future entrepreneurs, we don’t know a lot about what is 
working” (Kauffman Foundation, 2015). The mixed 
findings have resulted in calls for more research and 
greater methodical rigor to better understand the impact 
of entrepreneurship education (Rideout and Gray, 2013). 
Thus, a complementary window into the influence of 
entrepreneurship education could be observed through a 
neuroscience approach. Comparison of neural data 
against control groups before and after different variants 
of entrepreneurship education take place could cast new 
light on the effect of such efforts, helping to better 
understand its impact. Observing functional and even 
structural brain changes over time, researchers may 
observe whether and more precisely how 
entrepreneurship education impacts the brain. Do such 
initiatives result in any changes whatsoever? Are changes 
in activation levels present in areas related to regions 
theoretically linked to entrepreneurship, such as the 
orbitofrontal cortex (uncertainty), nucleus accumbens 
(risk taking) or left inferior parietal cortex (creativity)? 
Do certain treatments or approaches, but not others result 
in significant changes in neural processing related to 
entrepreneurial behavior? How do neural responses to 
entrepreneurship education vary across individuals?  

In sum, longitudinal neuroimaging data informing how 
the brain changes as a result of certain entrepreneurship 
education initiatives can offer new evidence on the 
impact of entrepreneurship education. Understanding 
how the brain itself responds to certain initiatives may 
assist in rethinking and refining how entrepreneurship 
education efforts are optimally approached.  

CONCLUDING REMARKS 

To the best of our knowledge, this work represents the 
first cross-disciplinary effort to bridge neuroscience and 
entrepreneurship. Given the emergence and increasing 
accessibility of neuroscience techniques, we argue that 
the time is ripe for the advancement of a neural-based 
understanding of the entrepreneurial process. The direct 
observation of brain activity brings into focus a 
fundamentally new level of understanding that can 
complement, challenge and ultimately extend present 
knowledge in entrepreneurship. In advancing a 

foundation for research at the neuroscience-
entrepreneurship intersection, we began this study by 
articulating how neuroscientific methods can add value 
to the field of entrepreneurship beyond existing 
approaches. We put forward an in-depth overview of two 
key methodologies with the intention of accelerating the 
learning curve for the entrepreneurship scholar. 
Moreover, we elaborated on a number of central areas of 
entrepreneurship cognition, and beyond, that could be 
meaningfully extended by neuroscience. We concluded 
with discussion of challenges that lie ahead. It has not 
escaped our notice that these efforts could serve as a 
cornerstone for the growth of a new sub-field within 
neuroscience and business, namely neuro-
entrepreneurship. 
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