Using semantic content as cues for better scanpath prediction
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Abstract

Under natural viewing conditions, human observers use shifts in
gaze to allocate processing resources to subsets of the visual input.
There are many computational models that try to predict these shifts
in eye movement and attention. Although the important role of high
level stimulus properties (e.g., semantic information) stands undis-
puted, most models are based solely on low-level image properties.
We here demonstrate that a combined model of high-level object
detection and low-level saliency significantly outperforms a low-
level saliency model in predicting locations humans fixate on. The
data is based on eye-movement recordings of humans observing
photographs of natural scenes, which contained one of the follow-
ing high-level stimuli: faces, text, scrambled text or cell phones. We
show that observers - even when not instructed to look for anything
particular, fixate on a face with a probability of over 80% within
their first two fixations, on text and scrambled text with a probabil-
ity of over 65.1% and 57.9% respectively, and on cell phones with
probability of 8.3%. This suggests that content with meaningful
semantic information is significantly more likely to be seen earlier.
Adding regions of interest (ROI), which depict the locations of the
high-level meaningful features, significantly improves the predic-
tion of a saliency model for stimuli with high semantic importance,
while it has little effect for an object with no semantic meaning.
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1 Introduction

Human visual attention serves to delegate the resources of the brain
to quickly and efficiently process the vast amount of information
that is available in the environment [James 1950]. Selective visual
attention is beginning to be reasonably well understood and quan-
titative models have been derived to explain attentional and eye
movement deployments in the visual scene [Itti and Koch 2001].
However, their predictive power has not reached its full potential
[Peters et al. 2005; Oliva et al. 2003]. One of the dominant sensory-
driven models of attention currently focuses on low-level attributes
of the visual scene to evaluate the most salient areas. Features such
as intensity, orientation, and color are commonly combined to pro-
duce maps through center-surround filtering at multi-scaled reso-
lutions. These maps are normalized to create an overall saliency
map, which predicts human fixations significantly above chance
[Itti and Koch 2000]. Filling some of the gaps between the saliency
map models current predictive power and the theoretical optimum
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is thought to be possible by incorporating higher-order statistics in
saliency models [Einhéuser et al. 2006]. One way of doing this is
by adding new feature channels that represent high-level attractive
stimuli. For example, in recent work we have shown that faces, a
high-level stimulus, attract gaze and can be used for better predic-
tions of observer’s scanpaths [Cerf et al. 2008]. This makes sense
as faces were likely to have been an important feature to pick out
in our evolutionary environment, and thus a process to allocate at-
tention toward faces has reason to arise in the brain. This study
looks at how a variety of high-level stimuli effects human attention
in still images. Specifically, we are trying to address the question
of whether any high-level object can be used for improved predic-
tion, or only ones that have more meaningful properties. Although
the claim that one is born with an innate ability to detect faces is
still under debate [Hershler and Hochstein 2005; VanRullen 2006],
we can surely claim that one is not born with a similar mechanism
for text or cell phone detection. If we are good in detecting those
in a natural scene it must be due to experience and adaptation with
time. That said - it is obvious that reading text is very important for
modern humans, and thus we can imagine text acting as an attractor
similarly to faces.

In order to test the role of semantic content’s effect on gaze, we
had 36 subjects look at 4 different scenes, each containing a differ-
ent high-level entity - faces, text, scrambled text and cell phones.
We tested both the saliency of each of the high-level stimuli, and
the predictive power of a saliency map model with and without the
addition of a high-level object detector.

2 Methods

2.1 Experimental procedures

Thirty six subjects were divided to 4 groups, each viewing a set of
images (1024 x 768 pixels). Group 1 viewed 150 images containing
faces. Group 2 viewed 40 images of natural scenes containing text.
Group 3 viewed the same 40 images as group 2 only that the text
of the images was made of random letters drawn from an English
based distribution of letters. The modified images were to look as
if they had not been manipulated at all. The size, font, color, orien-
tation and shape remained the same, only that the text in the scene
was scrambled, such that it had no meaning. Group 4 viewed 37 im-
ages containing natural scenes with a cell phone located somewhere
in the scene. The sizes of the cell phone, texts, and faces were cho-
sen such that they cover no more than 5% + 1% (mean =+ s.d.) of
the entire image - between 1° to 5° of the visual field. All subjects
were literate, had normal or corrected-to-normal vision, and were
naive to the purpose of the experiment.

The objects were chosen such that they vary from ones that carry
highly semantic content (faces) to ones that carry lower seman-
tic/emotional and personal content (cell phones). Although one can
argue on the importance of faces in our life, it is clear that faces
carry higher semantic content than cell phones. Images were pre-
sented to all groups in the same setup. Images were presented to
subjects for 2 s, after which they were instructed to answer “How
interesting was the image?” using a scale of 1-9 (9 being the most
interesting). The task was chosen such that it would not bias sub-
jects to look at anything in particular. No subject was shown more



Figure 1: Examples of images from the 4 categories: Faces, Text, Scrambled Text and cell phones, with scanpaths of one individual from
each of the 4 groups superimposed. The triangle marks the first and the square the last fixation, the white line the scanpath, and the black
circles the subsequent fixations. Faces and cell phone images were from the [Cerf et al. 2008] database. The trend of visiting the faces, text

and even scrambled text first - typically within the 15 or 2¢

than one category (cell phone, faces, text, or scrambled text) in or-
der not to bias the viewings. The images were introduced as “regu-
lar images that one can expect to find in an everyday personal photo
album”. Scenes were indoors and outdoors still images (see exam-
ples in Fig. 1). Face images included faces in various skin colors,
age groups, and positions. Faces had neutral expressions. No im-
age had the face/text/cell phone at the center of the image as this
was the starting fixation location in all trials. Subjects fixated on a
cross in the center before each image onset. Eye-position data was
acquired at 1000 Hz using an Eyelink1000 (SR Research, Osgoode,
Canada) eye-tracking device. The images were presented on a CRT
screen (120 Hz), using Matlab’s psychophysics and eyelink toolbox
extensions. Stimulus luminance was linear in pixel values. The dis-
tance between the screen and the subject was 80 cm, giving a total
visual angle for each image of 28° x 21°. Subjects used a chin-rest
to stabilize their head. Data was acquired from the right eye alone.

2.2 A model combining low-level saliency with high-
level features

To determine whether high-level objects contribute more than their
low-level attributes to power attention we tested how well the stan-
dard low-level feature driven saliency map does in comparison with
the same model combined with an extra high-level entity detector.
As a face-detector we used the widely used Viola and Jones algo-
rithm for face recognition [Viola and Jones 2001]. For the other
entities we manually defined minimal ROIs around the entity inves-
tigated. Each entity’s saliency map was represented as a positive
valued heat map over the image plane. The original saliency map
is computed as an average of 3 channels: intensity, orientation and
color [Itti et al. 1998]:
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The modified map is made with the extra entity channel:

S=2(N()+N(C)+N(O)+ N(E)) 2)
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The combination was linear in nature with uniform weight distri-
bution for maximum simplicity. Performance of the new saliency
map was measured by the receiver operating characteristic (ROC).
The hit rate was calculated by determining the locations where the
saliency map is above threshold and there is a fixation present. Sim-
ilarly, the false alarm rate was calculated by measuring the locations
at which the saliency map is above threshold and there is no fixation
present (for discussion see [Cerf et al. 2008]). The ROC curve was

fixation - is evident, while cell phones do not seem to draw eye gaze in the same
manner. Note that images are in color, but are here printed in grayscale.

created by varying the threshold to cover all possible ranges of val-
ues the saliency map produces. The area under the curve (AUC) is
a general measure of how well the saliency map predicts fixations.
An AUC of 50% reflects chance and an AUC of 100% reflects per-
fect prediction.

3 Results

3.1 Psychophysical results

To evaluate the results of the 36 subjects’ viewing of the images, we
manually defined minimally sized rectangular ROIs around each
target object in each image of the entire collection. We assessed
how many of the first fixations went to a face/text/cell phone, how
many of the second, third fixations and so forth. In group 1 a face
was fixated on within the first two fixations in 89.3% of the trials
(Fig. 2). Given that the face ROIs were chosen very conserva-
tively (i.e. fixations just next to a face did not count as fixations on
the face), this shows that faces, if present, are typically fixated on
within the first two fixations (327 ms = 95 ms on average). To
verify that this is not due to chance we compared our results to an
unbiased baseline. The baseline for a particular image is the frac-
tion of all subjects’ fixations from all other images that fall in the
ROI of the particular image. The null hypothesis that we would see
the same fraction of first fixations on a face at random is rejected at
p < 10720 (t-test) (see Fig. 3 for illustration of the baseline calcu-
lation). Similar measures for the text and scrambled text show that
text was fixated on with the first two fixations (369 ms £ 158 ms)
in 81.1% (p < 10~'°) and scrambled text (415 ms + 147 ms) in
51.1% (p < 107'%).

Figure 2 shows that objects that carry higher semantic content draw
more attention. Both text and faces - which are semantically impor-
tant - are viewed significantly (p < 10™°) earlier than cell phones,
and present a similar “Poisson” pattern that decays with the esti-
mated importance of the feature. One key reason to use only the
first fixation as a measure for the text is the “reading” fixations.
While for meaningful text subjects usually spend a few of their fix-
ations actually reading the text, and for scrambled text they don’t,
in both cases they first gaze at the word, as if they are about to read
it, and only then figure out if they are to follow it by actual reading
or by saccading elsewhere.

3.2 Assessing the modified saliency model

In order to improve the predictive performance of our saliency al-
gorithm, we studied the affects of semantic information on fixation
allocation. We first tested the general importance of semantic con-



tent in a scene, and distinguished between different levels of impor-
tance. As control we used a cell phone which seems less important
for our daily life than text and faces. Adding a fourth channel for
each category to a standard saliency model and calculating a new
saliency map we tried to see how well the new map does in predict-
ing the locations of the subjects’ fixations.
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Figure 2: Extent of fixation on regions-of-interest (ROIs). Bars de-
pict percentage of trials, which reach the ROI the first time in the
first, second, third, ... fixation. The solid curves depict the fitting
of the data for each category. A Poisson-like fit indicates viewing of
the ROl in early fixations. This is illustrated in the faces, text and
scrambled text fits, whereas the cell phone fit indicates later fixa-
tions. This data shows that subjects tend to fixate on faces earlier
than text, and even more so than scrambled text. All highly semantic
cues are fixated on earlier than cell phones.

The performance of the standard saliency map was on average
65.3% (AUC for the 150 face images). Adding the face channel
increased the predictability to 79.3%. Predictions of fixation lo-
cation for subjects viewing normal text improved from 71.4% on
the standard saliency map, to 77.5%, and scrambled type improved
from 72.9% to 77.1%. Both results are significant improvements
(p = 0.0022, 0.0113 respectively). For the 40 text images, the
text channel leads to improvements for every image. If successive
fixations in the text ROI are removed - as they may constitute read-
ing fixations, predictions for subjects viewing normal text still im-
proves from 70.3% to 74.3% (p = 0.0275), and for scrambled text
improves from 72.2% to 75.4% (p = 0.0413). Nevertheless, for the
cell phone images, while the mean AUC for the standard saliency
map prediction was 71.7%, it improved only to 72.1% for the new
saliency map (not significant). The trend of significantly improving
the predictability of a saliency map by adding a high-level semantic
cue prevails only if the cue really seems to contain semantic con-
tent that is meaningful to us (be it innate or acquired). This trend is
shown in Figure 4 where we compare the AUC for all images with
the standard saliency map to the new saliency map and show that
for faces and text there is an increase in predictability, while the cell
phones show almost no improvement (all are on the diagonal).

In an attempt to better compare across groups we utilized our base-
line measure as a normalization factor. This takes into account the
varying size and locations of the ROI in all images (as these fac-
tors both influence how likely a certain region is to be fixated on by
chance). By dividing the fraction of fixations in each entity’s ROI
by its baseline value, we form a normalized measurement which is

Figure 3: Computation of the baseline. We consider all fixations,
except the ones recorded for this image. Then, we compute the frac-
tion of these which fall in the ROI for this image. Here, the ratio
of white dots (i.e., those inside the ROI) to all dots. For this im-
age, also shown in Fig. 1, out of 4497 fixations, 419 are in the ROI
(9.32%).

analogous to the number of times more likely the ROI is attended
than chance. Our results show that fixations falling on faces pro-
duce a normalized score of 18.2 (times subjects are more likely to
look at faces than baseline). Normal text produces a normalized
score of 10.0, and scrambled text produces a value of 8.0. There
is no significant difference between normal and scrambled text, but
there is a significant difference between faces and text (p < 107°).
Cell phones produce a relatively high score of 10, due to very low
control values. That is, even a single fixation on a cell phone is
very unlikely based on the baseline. Overall, faces, normal text and
scrambled text are much more likely to be fixated on than chance in
the first 2 fixations (p < 107'%), whereas cell phones are typically
visited only after the 3" fixation.
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Figure 4: Performance improvement for all images. Each symbol
represents the model’s performance predicting the subjects’ fixa-
tions on a particular image, measured using an area under ROC
curve (AUC) metric. Symbols above the diagonal indicate an im-
provement in the saliency map model when adding a high-level
channel. Shapes and color-code in the scatter-plot indicate the dif-
ferent categories. Images with face/text/scrambled text channels are
improved by the high-level channel. Images with faces are improved
the most. Images with cell phone channel inclusion do not show an
improvement in the predictive performance of the new model.



4 Conclusion

The extent to which high-level cues such as faces are learned dur-
ing early visual experience remains unclear [Johnson et al. 1991].
However, it is clear that faces are very important to us. More impor-
tant than text, or scrambled text and surely more than cell phones.
This is reflected in the results that show that adding high-level se-
mantic cues to existing saliency models improves performance in
predicting observers fixations. While the standard saliency model
gives an average prediction of 69.8%, we here show that for im-
ages with semantic content in them, we can reach predictions levels
of 77.9% on average. Saliency models with additional high-level
channels can be beneficial not only for the improvement of fixa-
tions prediction which has applications in engineering and art, but
can also serve as a measure (using the methods we demonstrate here
for comparisons of chance viewing with observer viewing) to study
the importance of high-level feature in a scene.
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